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Introduction

Condition-Based maintenance

◮ Condition-Based Maintenance (CBM) is a maintenance program that

recommends to perform maintenance actions based on the information

collected through condition monitoring

◮ CBM attempts to avoid unnecessary maintenance tasks by performing

maintenance actions only when there is evidence of abnormal behaviour

of the system

◮ A CBM program properly implemented can significantly reduce the total

maintenance costs



Introduction

Imperfect maintenance

◮ Under a CBM program, based on the information data, different

maintenance actions are programmed

◮ After a maintenance action, system condition depends on the

maintenance efficiency. Two extreme cases

◮ Minimal maintenance: system condition is just the same as before

(ABAO)
◮ Perfect maintenance: system condition is the same as if it were new

(AGAN)

◮ Reality lies between these two extreme cases: Imperfect maintenance

◮ Imperfect maintenance has been widely investigated in the literature.

However, its implementation in CBM is limited



Introduction

General framework

◮ A deteriorating system

◮ Continuous monitoring

◮ Delay time for the maintenance team arrival

◮ Imperfect repair performed by the maintenance team

◮ Maintenance strategy based on the system condition



Introduction

General Assumptions

◮ System subject to a continuous degradation and continuously monitored

◮ System failure, maintenance team is called for repairing the broken

system

◮ The maintenance team takes a fixed amount of time to start the

repair (“delayed repair”) and the system is unavailable. This repair is

instantaneous

◮ Maintenance strategy: reduce the system downtime. The maintenance

team is called to perform a maintenance action before the system failure.

It takes a fixed time to start the maintenance action

◮ If the system is failed at maintenance action time: corrective

replacement
◮ If the system is working at maintenance action time: imperfect

repair based on

◮ System degradation reduction (First Maintenance Model)
◮ System age reduction (Second Maintenance Model)



Formulation of the problem

General situation

◮ The degradation is modelled by a gamma process (Xt)t≥0 where Xt is

distributed Gamma (αt, β) with density

ft (x) =
βαt

Γ (αt)
x
αt−1

e
−βx , x ≥ 0, α > 0, β > 0.

Ft and F̄t cumulative distribution and survival function of Xt .

◮ The system fails when its degradation exceeds the level L,

σL=inf(t>0:Xt>L).

◮ At time σL, a signal is sent to the maintenance team which arrives at

time σL + τ and replaces the system by a new one.

◮ The system is unavailable from σL up to σL + τ .



Maintenance strategy

Preventive maintenance strategy

◮ Signal sent to the maintenance team when the system degradation

reaches M (0<M<L) (at time σM).

◮ At σM + τ , the maintenance actions start

◮ If the system is failed, a corrective replacement is performed
◮ If σM + τ < σL, a preventive imperfect repair is performed. After

repair

◮ If system degradation greater M, preventive replacement
◮ If system degradation less M, goes on working

Maintenance actions

◮ Corrective replacement (CR): system is broken at team maintenance

arrival

◮ Preventive repair (PM): repair brings the deterioration below M

◮ Preventive repair plus a preventive replacement (PM+PR): repair does

not bring deterioration below M



First Model

Preventive repair (imperfect)

◮ First model: Repair removes a part (ρ%) of the degradation accumulated

from the last maintenance action (0 ≤ ρ ≤ 1)

◮ Second model: Repair removes a part (ρ%) of the age accumulated from

the last maintenance action (0 ≤ ρ ≤ 1)

Goals

◮ Derive Markov renewal type equations for some transient measures

◮ Transient Reliability
◮ Transient Availability
◮ Transient Expected Cost

◮ Comparison the two models of repair



First Model. Markov Renewal Process

Maintained system evolution

S1 = U1 = σ
(1)
M + τ 1st maintenance action time, Yt maintained system

evolution

◮ If X
(1)
S1

> L CR at S1, YS1 = 0

◮ If X
(1)
S1

≤ L preventive repair (PM) at S1, reduction of the ρ% of the

degradation

◮ (1− ρ)XS1 ≥ M, unmaintainable system YS1 = 0
◮ (1− ρ)XS1 < M, YS1 = (1− ρ)XS1

From YS1 , 2nd maintenance action is planned at

S2 = S1 + σ
(2)
M−YS1

+ τ = S1 + U2

◮ If Y−
S2

> L CR at S2, YS2 = 0

◮ If X−
S2

≤ L PM at S2, reduction of the ρ% of the degradation

accumulated in U2

◮ YS1 + (1− ρ)X
(2)
U2

≥ M, unmaintainable system YS2 = 0

◮ YS1 + (1− ρ)X
(2)
U2

< M, YS2 = YS1 + (1− ρ)X
(2)
U1



First Model. Markov Renewal Process
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After Sn, evolution of (Yt)t>Sn
depends on (Yt)t≤Sn

only through YSn , (Yt)

semi-regenerative process with underlying MRP (Sn,Yn) where Yn = YSn and

interarrival times U ′
ns



First Model. Markov Renewal Process

(S1,Y
−
S1
)=(σM+τ,XσM+τ )

L
=(σM ,XσM

)+(τ,X
(1)
τ ).

X
(1)
τ independent copy of Xτ

Probability distribution function of (σM ,XσM
), Bertoin (1998)

f
(σM ,XσM )

(t,y)=
∫ ∞
s=0

1{M≤y<M+s}ft(y−s)µ(ds),

µ(ds) Gamma process Levy measure µ(ds) = αe−βs/s

Probability distribution function of (S1,Y
−
S1
)

For s > τ and x > M

hM (s,x)=

∫∫

R
2
+

1{M≤x−y<M+u}fs−τ (x−y−u)fτ (y)µ(du)dy



First Model. Markov Renewal Process

Kernel of (Sn,YSn ) given Y0 = x

Sx=σM−x+τ , ,YSx=






0 Y−
Sx

>L−x

0 Y−
Sx
≤L−x , (1−ρ)Y−

Sx
>M−x

x+(1−ρ)YSx
− Y−

Sx
≤L−x , (1−ρ)Y−

Sx
≤M−x

qx (ds,du)=P

(
S1∈ds,Y

−
S1
∈du|Y0=x

)

δ0(du)





∫ ∞

L−x

hM−x (s,u)du+1{M−x<(1−ρ)(L−x)}

∫ L−x

M−x
1−ρ

hM−x (s,u)du



ds

+1{u>x}1{u−x<min((L−x)(1−ρ),M−x)}h
M−x

(
s, u−x

1−ρ

)
du

1−ρ
ds

q̂x (s,u) kernel restricted to the operating states Y0=x

q̂x (s,u)=δ0(du)

∫ L−x

M−x
1−ρ

hM−x (s,u)du+1{ u−x
1−ρ

<min(L−x,
M−x
1−ρ )}

1
1−ρ

hM−x
(
s, u−x

1−ρ

)



Reliability Measures. First Maintenance Model

Transient Reliability for t ≤ τ

Rx(t) probability system is working in [0, t], Y0 = x ∈ [0,M] :

Rx (t)=Px (T>t)=P(σL−x>t)=P(Xt<L−x)=Ft(L−x), t<τ

Transient Reliability for t ≥ τ

Rx (t)=Px(T>t,S1>t)+Px (T>t, S1≤t), t≥τ

Px (T>t, S1>t) = P(σL−x>t, σM−x+τ>t)=Gx (t)

Px (T>t, S1≤t) = E

[
1{Sx≤t}1{Y

−
Sx

<L−x}1{(1−ρ)Y−
Sx

≥M−x}R0(t−Sx )

]

+ E

[
1{Sx≤t}1{Y

−
Sx

<L−x}1{(1−ρ)Y−
Sx

<M−x}Rx+(1−ρ)Y−
Sx

(t−Sx )

]



Reliability Measures. First Maintenance Model

Transient Reliability

For t > τ and x ∈ [0,M], transient reliability fulfills

Rx (t)=Gx (t)+

∫ t

τ

∫ M

0
Ry (t−s)q̂x (ds,dy)

where q̂x (ds, dy) sub-semi-Markov kernel of (Sn,YSn ) given Y0 = x restricted

to the operating states

Gx (t) = Px (T>t, S1>t)

=

∫ M−x

0
ft−τ (y)Fτ (L−x−y)dy ,



Reliability Measures. First Maintenance Model

Transient Availability for t ≤ τ

Ax (t) probability system is working at t given Y0 = x and t < τ

Ax (t) = Px (Yt<L)=P(σL−x>t)=P(Xt<L−x)=Ft(L−x), t<τ

Transient Availability for t > τ

Ax (t)=Px (Yt<L, S1>t)+Px (Yt<L, S1≤t), t≥τ

Px (Yt<L, S1>t) = P(σL−x>t,σM−x+τ>t)

Px (T>t, S1≤t) = E

[
1{Sx≤t}1{Y

−
Sx

≥L−x}A0(t−Sx )

]

+ E

[
1{Sx≤t}1{Y

−
Sx

<L−x}1{(1−ρ)Y−
Sx

≥M−x}A0(t−Sx )

]

+ E

[
1{Sx≤t}1{Y

−
Sx

<L−x}1{(1−ρ)Y−
Sx

<M−x}Ax+(1−ρ)Y−
Sx

(t−Sx )

]



Reliability Measures. First Maintenance Model

Transient Availability

For t>τ , availability fulfills

Ax (t)=Gx (t)+

∫ t

τ

∫ M

0
Ay (t−s)qx (ds,dy),

with Gx (t)

Gx (t) = Px (Yt>L, S1>t)

=

∫ M−x

0
ft−τ (y)Fτ (L−x−y)dy ,



Transient Expected Cost. First Maintenance Model

Transient cost

cx(t) mean cost in ]0, t] given Y0 = x , x ∈ [0,M]

cx (t)=Ex [C(]0,t])].

cCR corrective replacement cost, cPR preventive replacement cost, cPM

preventive repair cost and cd downtime cost per unit time

Transient cost

For t ≤ τ

cx (t) = cd

∫ t

0
P(t−u>σL−x ) du=cd

∫ t

0
F̄t−u(L−x) du,

For t>τ

cx (t)=Ex

[
C(]0,t])1{S1>t}

]
+Ex

[
C(]0,t])1{S1≤t}

]
.



Transient Expected Cost. First Maintenance Model

Transient cost for t > τ

The expected cost function at time t>τ with Y0=x fulfills

cx (t)=Bx (t)+

∫ t

τ

∫ M

0
cy (t−s)qx (ds,dy),

with x∈[0,M], where

Bx (t) = E

[
C(]0,t])1{S1>t}

]
+cdEx

[
(S1−σL)

+1{S1≤t}

]

+ cCRPx

(
S1≤t,Y

S
−
1
>L

)
+(cPR+cPM

)Ex



1{S1≤t}1
{

Y
−
S1

≤L

}1
{YS1

>M}





+ cPMEx



1{S1≤t}1
{

Y
−
S1

≤L

}1{YS1
≤M}







Second Maintenance model

Description (Mercier anc Castro, 2013)

◮ The system is working. It failed when degradation exceeds level L

◮ A signal is sent to the maintenance team when degradation reaches level

M (0 < M < L) (at time σM).

◮ At σM + τ , maintenance actions start

◮ System is failed at maintenance time, corrective replacement
◮ System is not failed at σM + τ (< σL), instantaneous imperfect

repair that removes only some part (ρ%) of the age accumulated
from the last maintenance time. After repair

◮ Degradation greater M, preventive replacement
◮ Degradation less M, goes on working



Second Maintenance Model
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After Sn, evolution of (Yt)t>Sn
depends on (Yt)t≤Sn

only through YSn , (Yt)

semi-regenerative process with underlying MRP (Sn,Yn) where Yn = YSn and

interarrival times U ′
ns



Second Model. Markov Renewal Process

Kernel of the Markov Renewal Process
(
Sn,YSn ,YS

−

n

)

qx (ds,du,dv)=P

(
S1∈ds,YS1

∈du,Y
S
−
1
∈dv |Y0=x

)
, x∈[0,M].

S1 = σM + τ

(S1,X(1−ρ)S1
,XS1)

L
=(σM ,X(1−ρ)σM

,XσM
)+(Xτ ,X(1−ρ)τ ,Xτ),

Calculating the p.d.f of (σM ,X(1−ρ)σM
,XσM

) and p.d.f of (τ,X(1−ρ)τ ,Xτ ) (τ

deterministic), by convolution we get the p.d.f (S1,X(1−ρ)S1 ,XS1 ) and the kernel

Mistake

But X(1−ρ)τ = X(1−ρ)(σM+τ) − X(1−ρ)σM
is not independent of σM



Second Model. Markov Renewal Process

Probability distribution function of (S1,X(1−ρ)S1 ,XS1 )

Let ϕ be any measurable function, we compute

E[ϕ(S1,X(1−ρ)S1
,XS1

)]=I1(ϕ)+I2(ϕ),

I1(ϕ) = E

[
ϕ(S1,X(1−ρ)S1

,XS1
)1{(1−ρ)(σM+τ)>σM}

]

I2(ϕ) = E

[
ϕ(S1,X(1−ρ)S1

,XS1
)1{(1−ρ)(σM+τ)≤σM}

]

we get

uM (s,u,v)=fρs(v−u)
∫M
0 fs−τ (x)(

∫ ∞
M−x

fτ−ρs(u−t−x)µ(dt))dx , τ<s<τ/ρ, M<u<v

uM(s,u,v)=f(1−ρ)s(u)
∫∞
M

fτ (v−w)(
∫∞
w−M

fρs−τ (w−u−t)µ(dt))dx , s>τ/ρ, u<M<v



Second Model. Markov Renewal Process

Kernel of (Sn,YSn )

The kernel (q̄x (ds,dy)) of (Sn,YSn )

q̄x (ds,dy)=νx(ds,dy)+δ0(dy)

∫ +∞

L−x

∫ z

0
uM−x (s,w ,z) dw dz

for s>τ , x∈[0,M] where

νx (ds,dy) = 1{y≤M}

∫ L−x

M−x

uM−x (s,y−x ,v) dv dy

+ δ0(dy)

∫ L−x

M−x

dz

∫ z

M−x

uM−x (s,y ,z) dy



Reliability Measures. Second Maintenance Model

Transient Reliability

Transient reliability fulfills

Rx (t) = Ft(L−x), t<τ

Rx (t) = Gx (t)+

∫ t

τ

∫ M

0
Ry (t−s)νx (ds,dy), t>τ

where νx (ds, dy) sub-semi-Markov kernel (Sn,YSn ) given Y0 = x restricted to

the operating states

Gx (t) = Px (T>t, S1>t)

=

∫ M−x

0
ft−τ (y)Fτ (L−x−y)dy ,



Reliability Measures. Second Maintenance Model

Transient Availability

Transient availability fulfills

Ax (t) = Ft(L−x), t<τ

Ax (t) = Gx (t)+
∫ t

τ

∫M

0
Ay (t−s)q̄x (ds,dy), t≥τ

Transient expected cost

cx (t) = cd
∫ t
0 F̄t−u(L−x)dx , t<τ

cx (t) = Bx (t)+
∫ t
τ

∫M
0 cy (t−s)q̄x (ds,dy), t≥τ



Numerical examples

Data set

Gamma process parameters α = 1.5, β = 3. Failure threshold L = 10, τ = 10,

ρ = 0.5, Cc = 100, Cr = 5, Cp = 60 and Cu = 2 (m.u.). MC simulation, 100

values from 0 to 10, and 40000 realizations in each point
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Figure : Availability versus M at time t = 75



Numerical examples
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Figure : Expected cost versus M at time t = 75

Interpretation

Similar values availability, maximum difference of 19.1295 m.u for the expected

cost rate. Model I: 7.69% repairs, 56.96% corrective replacements and 35.35%

preventive replacements. Model II, 5.69% repairs, 56.93% corrective

replacements and 35.43% preventive replacements



Numerical examples

Data set

α = 1.5, β = 3. Failure threshold L = 10, τ = 10, ρ = 0.75, Cc = 100, Cr = 5,

Cp = 60 and Cu = 2 (m.u). MC simulation, 100 values from 0 to 10, and

40000 realizations in each point
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Figure : Availability versus M at time t = 75



Numerical examples
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Figure : Expected cost versus M at time t = 75

Interpretation

Similar values availability, maximum difference of 10.14 m.u for the expected

cost rate. Model I: 30.74% repairs, 55.34% corrective replacements and

13.91% preventive replacements. Model II, 30.68% repairs, 55.42% corrective

replacements and 13.90% preventive replacements



Numerical examples

Data set

α = 1.5, β = 3. Failure threshold L = 10, τ = 2, ρ = 0.75, Cc = 100, Cr = 5,

Cp = 60 and Cu = 2 (m.u)
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Figure : Availability versus M at time t = 50



Numerical examples
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Figure : Expected cost versus M at time t = 50

Interpretation

Similar values availability, maximum difference (Model I-Model II) of 255.7646

m.u for the expected cost rate but for low values of M = 0.20. Model I:

74.63% repairs, 4.64% corrective replacements and 20.73% preventive

replacements. Model II, 69.94% repairs, 4.60% corrective replacements and

25.45% preventive replacements



Numerical examples

Data set

α = 1.5, β = 3. Failure threshold L = 10, τ = 5, ρ = 0.75
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Figure : Reliability versus M at time t = 20



Numerical examples

Data set

α = 1.5, β = 3. Failure threshold L = 10, τ = 3, ρ = 0.75
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Figure : Reliability versus M at time t = 10



Conclusions and further extensions

Conclusions

◮ Reliability analysis of a continuous degradation modelled as a gamma

process with imperfect delay repair under two models considering the

overshoot of the gamma process

◮ Fuctioning of the system is described through a semi-regenerative process

◮ Some transient reliability measures fulfill Markov renewal equations

◮ Numerical examples based on Monte-Carlo simulations are given. We

get that transient and reliability are similar for the two models and the

differences between them are found in the expected cost.



Conclusions and further extensions

Further extension: Computing the recursive formulas

For transient measures, Markov renewal equation verifies

Mx(t) = Wx (t), t≤τ

Mx(t) = Hx (t) +
∫ t

τ

∫M

0 My (t−s)Qx (s,y)ds dy t>τ

recursively for t ≤ τ

Mx (t)=M
(1)
x (t)=Wx (t), t<τ

for (i − 1)τ < t < iτ

Mx (t) = M
(i)
x (t)

= Hx(t)+
∑i−1

k=1

∫ t−kτ
t−(k+1)τ

∫M

0 M
(k)
y (t−τ−w)Qx (w+τ,y)dw dy ,
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